A wearable system that learns a kinematic model and finds structure in everyday manipulation by using absolute orientation sensors and a camera
نویسنده
چکیده
This thesis presents Duo, the first wearable system to autonomously learn a kinematic model of the wearer via body-mounted absolute orientation sensors and a head-mounted camera. With Duo, we demonstrate the significant benefits of endowing a wearable system with the ability to sense the kinematic configuration of the wearer’s body. We also show that a kinematic model can be autonomously estimated offline from less than an hour of recorded video and orientation data from a wearer performing unconstrained, unscripted, household activities within a real, unaltered, home environment. We demonstrate that our system for autonomously estimating this kinematic model places very few constraints on the wearer’s body, the placement of the sensors, and the appearance of the hand, which, for example, allows it to automatically discover a left-handed kinematic model for a left-handed wearer, and to automatically compensate for distinct camera mounts, and sensor configurations. Furthermore, we show that this learned kinematic model efficiently and robustly predicts the location of the dominant hand within video from the head-mounted camera even in situations where vision-based hand detectors would be likely to fail. Additionally, we show ways in which the learned kinematic model can facilitate highly efficient processing of large databases of first person experience. Finally, we show that the kinematic model can efficiently direct visual processing so as to acquire a large number of high quality segments of the wearer’s hand and the manipulated objects. Within the course of justifying these claims, we present methods for estimating global image motion, segmenting foreground motion, segmenting manipulation events, finding and representing significant hand postures, segmenting visual regions, and detecting visual points of interest with associated shape descriptors. We also describe our architecture and user-level application for machine augmented annotation and browsing of first person video and absolute orientations. Additionally, we present a real-time application in which the human and wearable cooperate through tightly integrated behaviors coordinated by the wearable’s kinematic perception, and together acquire high-quality visual segments of manipulable objects that interest the wearable. Thesis Supervisor: Rodney Brooks Title: Matsushita Professor of Robotics
منابع مشابه
Prediction of Kinematic Viscosity of Petroleum Fractions Using Artificial Neural Networks
In this work, artificial neural network (ANN) was utilized to develop a new model for the prediction of the kinematic viscosity of petroleum fractions. This model was generated as a function of temperature (T), normal boiling point temperature (Tb), and specific gravity (S). In order to develop the new model, different architectures of feed-forward type were examined. Finally, the optimum struc...
متن کاملManipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کاملThe Effect of Radio Waves on the Quality and Safety of Wearable Sensors in Healthcare
The industrial Internet of Things (IoT) is aiming to interconnect humans, machines, materials, processes and services in a network. Wireless Sensor Network (WSN) comprises the less power consuming, light weight and effective Sensor Nodes (SNs) for higher network performance. Radio Frequency Identification (RFID) and sensor networks are both wireless technologies that provide limitless future po...
متن کاملOverview of Performance and Accuracy of Smartphone Sensors in Augmented Reality Applications
Since incorrect excavations have resulted in extensive and irreparable financial and physical losses, therefore different drillings require having accurate information about the status of the infrastructures. Ubiquitous Geospatial Information System (UBGIS) as a new generation of Geospatial Information System (GIS) can be a good solution to avoid such problems. Augmented Reality (AR) is the ne...
متن کاملPersonal Positioning based on Walking Locomotion Analysis with Self-Contained Sensors and a Wearable Camera
In this paper, we propose a method of personal positioning for a wearable Augmented Reality (AR) system that allows a user to freely move around indoors and outdoors. The user is equipped with selfcontained sensors, a wearable camera, an inertial head tracker and display. The method is based on sensor fusion of estimates for relative displacement caused by human walking locomotion and estimates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005